organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(7*E*)-5-Benzyl-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl-3,3a,4,5,6,7hexahydro-2*H*-pyrazolo[4,3-c]pyridine

N. S. Karthikeyan,^a B. Uma Mahesh,^a K. Sathiyanarayanan,^a P. Raghavaiah^b and R. S. Rathore^c*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, India, ^bSchool of Chemistry, University of Hyderabad, Hyderabad 500 046, India, and ^cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046, India Correspondence e-mail: ravindranath_rathore@yahoo.com

Received 15 June 2010; accepted 16 June 2010

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.049; *wR* factor = 0.098; data-to-parameter ratio = 16.3.

In the title 2*H*-pyrazolo[4,3-*c*]pyridine derivative, $C_{32}H_{27}Cl_2N_3$, the dihydropyrazole ring adopts an envelope conformation and the piperidine fused ring a twisted-chair conformation. Two short intramolecular C-H···Cl contacts are observed. The crystal packing is characterized by dimeric C-Cl··· π interactions involving the 5-benzyl ring, with Cl···centroid and closest atomic Cl··· π distances of 3.778 (2) and 3.366 (4) Å, respectively.

Related literature

For the anti-inflammatory activity of 2*H*-pyrazolo[4,3-*c*]pyridine derivatives, see Krapcho & Turk (1975). For π -halogendimer interactions and their role in host-guest chemistry, see: Noman *et al.* (2004); Nagaraj *et al.* (2005).

Experimental

Crystal data

C ₃₂ H ₂₇ Cl ₂ N ₃	$V = 2666.0 (2) \text{ Å}^3$
$M_r = 524.47$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 13.7117 (7) Å	$\mu = 0.27 \text{ mm}^{-1}$
b = 15.4451 (6) Å	T = 294 K
c = 13.6896 (9) Å	$0.36 \times 0.26 \times 0.22$ mm
$\beta = 113.135 \ (7)^{\circ}$	

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{min} = 0.909, T_{max} = 0.943$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	334 parameters
$wR(F^2) = 0.098$	H-atom parameters constrained
S = 0.83	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
5436 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

11774 measured reflections

 $R_{\rm int} = 0.049$

5436 independent reflections

2483 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C3−H3···Cl1	0.98	2.61	3.101 (2)	111
C27−H27···Cl2	0.93	2.68	3.043 (3)	104

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* and *PLATON*.

The Bioinformatics Infrastructure Facility and the Single Crystal X-ray Diffractometer Facility at the University of Hyderabad are gratefully acknowledged are gratefully acknowledged for computation and data collection. RSR thanks the CSIR, New Delhi, for support under the scientist's pool scheme and NSK thanks the CSIR, New Delhi, for a Senior Research Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2791).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Krapcho, J. & Turk, C. F. (1975). US Patent No. 3 923 816.
- Nagaraj, B., Narasimhamurthy, T., Yathirajan, H. S., Nagaraja, P., Narasegowda, R. S. & Rathore, R. S. (2005). Acta Cryst. C61, o177–o180.
- Noman, A., Rehman, M. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2004). J. Org. Biomol. Chem. 2, 175–182.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2010). E66, o1734 [doi:10.1107/S1600536810023317]

(7*E*)-5-Benzyl-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl-3,3a,4,5,6,7-hexahydro-2*H*-pyrazolo[4,3-*c*]pyridine

N. S. Karthikeyan, B. U. Mahesh, K. Sathiyanarayanan, P. Raghavaiah and R. S. Rathore

Comment

Derivatives of 2*H*-pyrazolo[4,3-*c*]pyridine have been tested for anti-inflammatory activity (Krapcho & Turk, 1975). A search in Cambridge Structural Database (version 5.31) for such compounds retrieved zero hits. With a purpose to study hitherto unexplored structures of these compounds, we here report the synthesis and structural investigations on, 5-benzyl-(7E)-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl- 3,3a,4,5,6,7-hexahydro-2H-pyrazolo[4,3-c]pyridine, (I).

The structure of (I) with adopted atomic numbering scheme is shown in Fig 1. (I) is a racemic mixture. In the reported model, the stereogenic centers C3 and C3A possess *R*-configurations. The five-membered dihydropyrazole ring (N1/N2/C3/C3A/C7A) adopt an envelope conformation with atom C3 at the flap of the envelope (Ring puckering parameters are: $q^2 = 0.204$ (2) Å, $\phi^2 = 248.3$ (6)°). The adjacent 6-membered piperidine ring (C3A/C4/N5/C6/C7/C7A) assumes a chair conformation which is substantially twisted from ideal geometry. The puckering parameters are as follows: $q^2 = 0.189$ (2) Å, $q^3 = -0.468$ (2) Å, $\theta = 158.0$ (2)°, $\phi = 209.5$ (8)°, and total puckering amplitude, Q = 0.505 (2) Å.

Two short intra-molecular contacts C3—H3···Cl1 and C27—H27···Cl2 were observed (Table 1). Intermolecular C—Halogen··· π contact stabilizes the dimeric units in (I) (Fig 2). A dimer is formed by C29—Cl2···Cg5ⁱ [symmetry code (i): 1 - *x*, 1 - *y*, 1 - *z*]. The Cl2..*Cg*5 distance and C29—Cl2···Cg5 angle are 3.778 (2)Å and 141.2 (1)° respectively, whereas the minimum atomic distance in Cl2··· π is 3.366 (4) Å. *Cg*5 is the centroid of (C21–C26) ring. The C—Halogen··· π dimeric interactions [also referred as PHD; π -halogen-dimer interactions (Noman *et al.* 2004)] have been shown recently, to play an important role in host–guest chemistry (Nagaraj *et al.*, 2005; references therein).

Experimental

1-benzyl-3, 5-dibenzylidenepiperidin-4-one (0.003 mol) and phenyl hydrazine (0.003 mol) were dissolved in 2-propanol. The reaction mixture was refluxed for 1–2 h on a water bath and tested with TLC at regular intervals for completeness of reaction. Following that, the resulting mixture was cooled and poured into crushed ice. The solid so obtained was separated, washed with water and subjected to column chromatography using ethyl acetate and n-hexane. Final yield 89%, m.p. 153–155° C. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran mixture in 1:1 ratio.

Refinement

H atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic/sp²)—H = 0.93 Å, C(methylene)—H = 0.97 Å, C(methine)—H = 0.98 Å, and $U_{iso} = 1.2$ U_{eq} (parent atom).

Figures

Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 1997). The radii of H atoms are on an arbitrary scale. Dashed lines indicate short intramolecular C—H…Cl contacts.

(7E)-5-Benzyl-7-(2-chlorobenzylidene)-3-(2-chlorophenyl)-2-phenyl-3, 3a, 4, 5, 6, 7-hexahydro-2H-pyrazolo[4, 3-c]pyridine

Crystal data

F(000) = 1096
$D_{\rm x} = 1.307 {\rm ~Mg~m}^{-3}$
Melting point: 427(2) K
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 2998 reflections
$\theta = 2.6 - 29.1^{\circ}$
$\mu = 0.27 \text{ mm}^{-1}$
T = 294 K
Plate, colorless
$0.36 \times 0.26 \times 0.22 \text{ mm}$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer	5436 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2483 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.049$
Detector resolution: 16.3291 pixels mm ⁻¹	$\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scan	$h = -14 \rightarrow 17$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2009)	$k = -19 \rightarrow 17$
$T_{\min} = 0.909, \ T_{\max} = 0.943$	$l = -15 \rightarrow 17$
11774 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.098$	H-atom parameters constrained
<i>S</i> = 0.83	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0389P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5436 reflections	$(\Delta/\sigma)_{max} < 0.001$
334 parameters	$\Delta \rho_{max} = 0.17 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05–01-2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C3	0.68994 (17)	0.48100 (13)	0.39914 (17)	0.0384 (6)
Н3	0.7343	0.4316	0.3979	0.046*
C3A	0.60177 (16)	0.44975 (13)	0.43353 (18)	0.0372 (6)
H3A	0.5847	0.4958	0.4735	0.045*
C4	0.62227 (17)	0.36610 (14)	0.49646 (19)	0.0466 (7)
H4A	0.6489	0.3225	0.4623	0.056*
H4B	0.6753	0.3756	0.5675	0.056*
C6	0.44171 (18)	0.31461 (13)	0.39584 (19)	0.0483 (7)
H6A	0.3770	0.2970	0.4031	0.058*
H6B	0.4665	0.2659	0.3671	0.058*
C7	0.41706 (18)	0.38915 (13)	0.31845 (19)	0.0399 (6)
C7A	0.51168 (17)	0.43857 (14)	0.32849 (19)	0.0396 (6)
C8	0.67598 (17)	0.52120 (13)	0.21565 (19)	0.0372 (6)
C9	0.78552 (18)	0.51570 (14)	0.24683 (19)	0.0440 (6)
Н9	0.8286	0.5028	0.3170	0.053*
C10	0.8300 (2)	0.52943 (15)	0.1736 (2)	0.0538 (7)

H10	0.9033	0.5261	0.1954	0.065*
C11	0.7685 (2)	0.54792 (15)	0.0691 (2)	0.0565 (7)
H11	0.7992	0.5561	0.0202	0.068*
C12	0.6598 (2)	0.55403 (15)	0.0385 (2)	0.0563 (7)
H12	0.6173	0.5671	-0.0317	0.068*
C13	0.61374 (19)	0.54113 (14)	0.1102 (2)	0.0491 (7)
H13	0.5406	0.5458	0.0882	0.059*
C14	0.75983 (17)	0.55254 (13)	0.46627 (18)	0.0371 (6)
C15	0.86179 (18)	0.53885 (15)	0.54037 (19)	0.0496 (7)
C16	0.9251 (2)	0.60585 (19)	0.5984 (2)	0.0626 (8)
H16	0.9935	0.5946	0.6474	0.075*
C17	0.8869 (2)	0.68811 (19)	0.5834 (2)	0.0629 (8)
H17	0.9297	0.7336	0.6211	0.075*
C18	0.7853 (2)	0.70400 (16)	0.5126 (2)	0.0603 (8)
H18	0.7584	0.7601	0.5038	0.072*
C19	0.72281 (19)	0.63714 (15)	0.4546 (2)	0.0494 (7)
H19	0.6542	0.6489	0.4064	0.059*
C20	0.5425 (2)	0.25732 (14)	0.5690 (2)	0.0565 (7)
H20A	0.5710	0.2125	0.5381	0.068*
H20B	0.4757	0.2366	0.5688	0.068*
C21	0.6183 (2)	0.27240 (15)	0.6818 (2)	0.0503 (7)
C22	0.7124 (2)	0.22752 (18)	0.7258 (3)	0.0785 (10)
H22	0.7295	0.1863	0.6855	0.094*
C23	0.7823 (3)	0.2434 (2)	0.8303 (4)	0.0997 (14)
H23	0.8460	0.2132	0.8594	0.120*
C24	0.7569 (3)	0.3035 (2)	0.8899 (3)	0.0999 (14)
H24	0.8035	0.3141	0.9596	0.120*
C25	0.6636 (3)	0.34798 (18)	0.8477 (2)	0.0777 (9)
H25	0.6462	0.3886	0.8884	0.093*
C26	0.5955 (2)	0.33212 (16)	0.7442 (2)	0.0601 (8)
H26	0.5322	0.3628	0.7156	0.072*
C27	0.32178 (17)	0.41049 (14)	0.2455 (2)	0.0456 (6)
H27	0.3200	0.4618	0.2092	0.055*
C28	0.21940 (17)	0.36564 (15)	0.21350 (18)	0.0413 (6)
C29	0.12329 (18)	0.41044 (14)	0.1697 (2)	0.0454 (6)
C30	0.02629 (18)	0.36958 (16)	0.1313 (2)	0.0552 (7)
H30	-0.0359	0.4017	0.1019	0.066*
C31	0.0221 (2)	0.28080 (17)	0.1368 (2)	0.0593 (8)
H31	-0.0429	0.2524	0.1113	0.071*
C32	0.1142 (2)	0.23457 (15)	0.1800 (2)	0.0570 (8)
H32	0.1115	0.1746	0.1845	0.068*
C33	0.21102 (19)	0.27578 (15)	0.21688 (19)	0.0507 (7)
H33	0.2726	0.2428	0.2448	0.061*
N1	0.52729 (14)	0.47054 (11)	0.24903 (16)	0.0431 (5)
N2	0.62818 (14)	0.51001 (11)	0.28892 (15)	0.0403 (5)
N5	0.52271 (14)	0.33591 (11)	0.50228 (15)	0.0428 (5)
Cl1	0.91528 (6)	0.43491 (4)	0.56217 (7)	0.0870 (3)
Cl2	0.12374 (5)	0.52302 (4)	0.16351 (7)	0.0764 (3)
				· · ·

Atomic displacement parameters	(λ^2)
Atomic alsplacement parameters	(A)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C3	0.0318 (12)	0.0456 (13)	0.0375 (14)	0.0018 (11)	0.0133 (12)	0.0007 (12)
C3A	0.0334 (13)	0.0410 (14)	0.0401 (14)	-0.0001 (10)	0.0174 (12)	-0.0006 (12)
C4	0.0388 (14)	0.0504 (15)	0.0494 (16)	-0.0005 (11)	0.0161 (14)	0.0036 (13)
C6	0.0433 (15)	0.0498 (15)	0.0512 (17)	-0.0036 (12)	0.0179 (14)	-0.0057 (13)
C7	0.0361 (14)	0.0483 (14)	0.0384 (15)	-0.0021 (11)	0.0179 (13)	-0.0016 (12)
C7A	0.0332 (14)	0.0460 (14)	0.0429 (16)	0.0006 (11)	0.0187 (13)	0.0023 (12)
C8	0.0335 (14)	0.0410 (13)	0.0380 (14)	-0.0044 (11)	0.0152 (13)	-0.0030 (12)
C9	0.0394 (15)	0.0571 (15)	0.0380 (15)	0.0010 (12)	0.0180 (13)	-0.0014 (12)
C10	0.0424 (15)	0.0719 (17)	0.0555 (18)	-0.0033 (13)	0.0281 (16)	-0.0068 (15)
C11	0.0635 (19)	0.0644 (17)	0.0556 (19)	-0.0102 (14)	0.0384 (17)	-0.0052 (15)
C12	0.0599 (19)	0.0697 (17)	0.0403 (16)	-0.0072 (14)	0.0208 (16)	0.0048 (14)
C13	0.0379 (14)	0.0639 (17)	0.0440 (16)	-0.0046 (12)	0.0143 (14)	0.0015 (14)
C14	0.0351 (13)	0.0438 (14)	0.0352 (14)	-0.0031 (11)	0.0167 (12)	-0.0005 (12)
C15	0.0405 (14)	0.0607 (16)	0.0414 (15)	-0.0023 (13)	0.0095 (14)	-0.0021 (13)
C16	0.0460 (16)	0.084 (2)	0.0463 (18)	-0.0079 (16)	0.0063 (15)	-0.0097 (16)
C17	0.063 (2)	0.074 (2)	0.0553 (19)	-0.0245 (16)	0.0269 (17)	-0.0207 (16)
C18	0.070 (2)	0.0479 (15)	0.072 (2)	-0.0065 (14)	0.0376 (19)	-0.0086 (15)
C19	0.0418 (15)	0.0516 (16)	0.0548 (17)	0.0009 (13)	0.0187 (14)	-0.0034 (14)
C20	0.0609 (17)	0.0449 (15)	0.0643 (19)	-0.0002 (13)	0.0252 (17)	0.0074 (14)
C21	0.0457 (16)	0.0430 (15)	0.0597 (19)	0.0010 (13)	0.0179 (16)	0.0206 (15)
C22	0.063 (2)	0.0688 (19)	0.102 (3)	0.0148 (16)	0.031 (2)	0.037 (2)
C23	0.051 (2)	0.090 (3)	0.130 (4)	0.010 (2)	0.007 (3)	0.064 (3)
C24	0.073 (3)	0.095 (3)	0.090 (3)	-0.032 (2)	-0.013 (2)	0.049 (2)
C25	0.083 (2)	0.077 (2)	0.057 (2)	-0.0231 (18)	0.010(2)	0.0085 (18)
C26	0.0543 (18)	0.0576 (17)	0.0574 (19)	-0.0043 (14)	0.0100 (17)	0.0125 (16)
C27	0.0397 (15)	0.0499 (14)	0.0486 (17)	-0.0030 (12)	0.0189 (14)	0.0001 (13)
C28	0.0369 (14)	0.0516 (15)	0.0361 (15)	-0.0030 (12)	0.0152 (13)	-0.0033 (12)
C29	0.0399 (15)	0.0487 (14)	0.0493 (16)	-0.0047 (12)	0.0193 (14)	0.0013 (13)
C30	0.0377 (15)	0.0598 (17)	0.0600 (19)	0.0001 (12)	0.0104 (15)	0.0037 (15)
C31	0.0448 (16)	0.0624 (18)	0.0586 (19)	-0.0144 (14)	0.0072 (16)	-0.0048 (15)
C32	0.0527 (17)	0.0477 (15)	0.0564 (18)	-0.0077 (13)	0.0060 (16)	-0.0058 (14)
C33	0.0448 (16)	0.0528 (16)	0.0465 (16)	-0.0005 (12)	0.0093 (14)	-0.0077 (13)
N1	0.0299 (11)	0.0542 (12)	0.0451 (13)	-0.0051 (9)	0.0145 (11)	-0.0001 (11)
N2	0.0287 (11)	0.0570 (12)	0.0350 (12)	-0.0049 (9)	0.0124 (10)	0.0001 (10)
N5	0.0400 (12)	0.0443 (11)	0.0434 (12)	-0.0051 (9)	0.0156 (11)	0.0044 (10)
Cl1	0.0653 (5)	0.0766 (5)	0.0839 (6)	0.0217 (4)	-0.0087 (5)	0.0038 (4)
C12	0.0549 (4)	0.0535 (4)	0.1194 (7)	0.0007 (3)	0.0327 (5)	0.0127 (4)
Geometric pa	arameters (Å, °)					
C3—N2		1.480 (3)	C17–	C18	1.37	72 (3)
C2 C14		1514(2)	C17	U17	0.03	200

C3A—C7A	1.493 (3)	C19—H19	0.9300
С3—Н3	0.9800	C18—H18	0.9300
C3—C3A	1.537 (3)	C18—C19	1.377 (3)
C3—C14	1.514 (3)	C17—H17	0.9300
C3—IN2	1.460 (5)	C1/C18	1.572 (5)

C3A—C4	1.517 (3)	C20—N5	1.478 (3)
СЗА—НЗА	0.9800	C20—C21	1.503 (3)
C4—N5	1.474 (3)	C20—H20A	0.9700
C4—H4A	0.9700	C20—H20B	0.9700
C4—H4B	0.9700	C21—C26	1.373 (3)
C6—N5	1.481 (3)	C21—C22	1.377 (3)
C6—C7	1.510 (3)	C22—C23	1.397 (4)
С6—Н6А	0.9700	C22—H22	0.9300
С6—Н6В	0.9700	C23—C24	1.368 (5)
C7—C27	1.337 (3)	C23—H23	0.9300
С7—С7А	1.464 (3)	C24—C25	1.364 (4)
C7A—N1	1.287 (3)	C24—H24	0.9300
C8—C13	1.392 (3)	C25—C26	1.379 (3)
C8—C9	1.393 (3)	С25—Н25	0.9300
C8—N2	1.408 (3)	С26—Н26	0.9300
C9—C10	1.379 (3)	C27—C28	1.470 (3)
С9—Н9	0.9300	С27—Н27	0.9300
C10—C11	1.375 (3)	C28—C33	1.395 (3)
C10—H10	0.9300	C28—C29	1.398 (3)
C11—C12	1.383 (3)	C29—C30	1.376 (3)
C11—H11	0.9300	C29—Cl2	1.741 (2)
C12—C13	1.375 (3)	C30—C31	1.376 (3)
C12—H12	0.9300	С30—Н30	0.9300
С13—Н13	0.9300	C31—C32	1.367 (3)
C14—C15	1.383 (3)	С31—Н31	0.9300
C14—C19	1.388 (3)	C32—C33	1.376 (3)
C15—C16	1.383 (3)	С32—Н32	0.9300
C15—Cl1	1.741 (2)	С33—Н33	0.9300
C16—C17	1.359 (3)	N1—N2	1.411 (2)
С16—Н16	0.9300		
N2—C3—C14	111.73 (17)	C18—C17—H17	120.1
N2—C3—C3A	101.74 (17)	C17—C18—C19	120.2 (2)
C14—C3—C3A	115.45 (19)	C17—C18—H18	119.9
N2—C3—H3	109.2	C19—C18—H18	119.9
С14—С3—Н3	109.2	C18—C19—C14	121.5 (2)
СЗА—СЗ—НЗ	109.2	С18—С19—Н19	119.2
C7A—C3A—C4	110.32 (17)	C14—C19—H19	119.2
C7A—C3A—C3	101.19 (18)	N5-C20-C21	113.11 (18)
C4—C3A—C3	116.68 (18)	N5—C20—H20A	109.0
С7А—С3А—НЗА	109.4	C21—C20—H20A	109.0
С4—С3А—НЗА	109.4	N5-C20-H20B	109.0
С3—С3А—НЗА	109.4	C21—C20—H20B	109.0
N5—C4—C3A	109.35 (17)	H20A-C20-H20B	107.8
N5—C4—H4A	109.8	C26—C21—C22	118.0 (3)
C3A—C4—H4A	109.8	C26—C21—C20	120.6 (2)
N5—C4—H4B	109.8	C22—C21—C20	121.5 (3)
C3A—C4—H4B	109.8	C21—C22—C23	120.5 (3)
H4A—C4—H4B	108.3	C21—C22—H22	119.8
N5—C6—C7	113.30 (17)	C23—C22—H22	119.8

N5—C6—H6A	108.9	C24—C23—C22	119.8 (3)
С7—С6—Н6А	108.9	С24—С23—Н23	120.1
N5—C6—H6B	108.9	С22—С23—Н23	120.1
С7—С6—Н6В	108.9	C25—C24—C23	120.3 (3)
H6A—C6—H6B	107.7	C25—C24—H24	119.8
C27—C7—C7A	120.7 (2)	C23—C24—H24	119.8
С27—С7—С6	126.6 (2)	C24—C25—C26	119.3 (3)
C7A—C7—C6	112.69 (19)	С24—С25—Н25	120.4
N1—C7A—C7	123.8 (2)	С26—С25—Н25	120.4
N1—C7A—C3A	114.9 (2)	C21—C26—C25	122.1 (3)
C7—C7A—C3A	121.2 (2)	C21—C26—H26	119.0
C13—C8—C9	118.6 (2)	С25—С26—Н26	119.0
C13—C8—N2	119.9 (2)	C7—C27—C28	130.2 (2)
C9—C8—N2	121.5 (2)	С7—С27—Н27	114.9
С10—С9—С8	120.0 (2)	С28—С27—Н27	114.9
С10—С9—Н9	120.0	C33—C28—C29	115.5 (2)
С8—С9—Н9	120.0	C33—C28—C27	122.7 (2)
C11—C10—C9	121.4 (2)	C29—C28—C27	121.6 (2)
С11—С10—Н10	119.3	C30—C29—C28	122.9 (2)
С9—С10—Н10	119.3	C30—C29—Cl2	117.43 (18)
C10-C11-C12	118.5 (3)	C28—C29—Cl2	119.63 (17)
С10—С11—Н11	120.7	C31—C30—C29	119.4 (2)
C12—C11—H11	120.7	С31—С30—Н30	120.3
C13—C12—C11	121.1 (3)	С29—С30—Н30	120.3
C13—C12—H12	119.5	C32—C31—C30	119.6 (2)
C11—C12—H12	119.5	С32—С31—Н31	120.2
C12—C13—C8	120.4 (2)	С30—С31—Н31	120.2
С12—С13—Н13	119.8	C31—C32—C33	120.7 (2)
С8—С13—Н13	119.8	С31—С32—Н32	119.6
C15—C14—C19	116.5 (2)	С33—С32—Н32	119.6
C15—C14—C3	123.4 (2)	C32—C33—C28	121.9 (2)
C19—C14—C3	120.10 (19)	С32—С33—Н33	119.1
C16—C15—C14	122.2 (2)	С28—С33—Н33	119.1
C16—C15—Cl1	117.7 (2)	C7A—N1—N2	107.59 (19)
C14—C15—Cl1	120.18 (18)	C8—N2—N1	115.95 (18)
C17—C16—C15	119.7 (2)	C8—N2—C3	121.56 (17)
C17—C16—H16	120.2	N1—N2—C3	110.18 (17)
C15-C16-H16	120.2	C4—N5—C20	110.11 (18)
C16—C17—C18	119.9 (2)	C4—N5—C6	111.69 (18)
C16—C17—H17	120.1	C20—N5—C6	108.06 (17)
N2—C3—C3A—C7A	18.3 (2)	C26—C21—C22—C23	-0.6 (4)
C14—C3—C3A—C7A	139.43 (18)	C20—C21—C22—C23	179.1 (2)
N2-C3-C3A-C4	137.96 (19)	C21—C22—C23—C24	0.5 (5)
C14—C3—C3A—C4	-100.9 (2)	C22—C23—C24—C25	0.0 (5)
C7A—C3A—C4—N5	-52.9 (2)	C23—C24—C25—C26	-0.4 (5)
C3—C3A—C4—N5	-167.63 (18)	C22—C21—C26—C25	0.2 (4)
N5-C6-C7-C27	-141.8 (2)	C20—C21—C26—C25	-179.5 (2)
N5-C6-C7-C7A	39.4 (3)	C24—C25—C26—C21	0.3 (4)
C27—C7—C7A—N1	-36.8 (3)	C7A—C7—C27—C28	172.6 (2)

142.1 (2)	C6—C7—C27—C28	-6.1 (4)
147.8 (2)	C7—C27—C28—C33	-31.2 (4)
-33.3 (3)	C7—C27—C28—C29	153.8 (3)
-135.4 (2)	C33—C28—C29—C30	-0.6 (4)
-11.3 (2)	C27—C28—C29—C30	174.7 (2)
40.4 (3)	C33—C28—C29—Cl2	178.85 (18)
164.53 (19)	C27—C28—C29—Cl2	-5.9 (3)
-0.4 (3)	C28—C29—C30—C31	0.9 (4)
-178.2 (2)	Cl2—C29—C30—C31	-178.6 (2)
-0.6 (4)	C29—C30—C31—C32	-0.2 (4)
1.1 (4)	C30-C31-C32-C33	-0.8 (4)
-0.6 (4)	C31—C32—C33—C28	1.1 (4)
-0.3 (4)	C29—C28—C33—C32	-0.4 (4)
0.8 (3)	C27—C28—C33—C32	-175.6 (2)
178.6 (2)	C7—C7A—N1—N2	-177.40 (19)
-140.5 (2)	C3A—C7A—N1—N2	-1.7 (3)
103.9 (3)	C13—C8—N2—N1	35.8 (3)
39.0 (3)	C9—C8—N2—N1	-146.42 (19)
-76.6 (3)	C13—C8—N2—C3	174.33 (19)
-1.5 (4)	C9—C8—N2—C3	-7.9 (3)
178.0 (2)	C7A—N1—N2—C8	158.2 (2)
179.33 (19)	C7A—N1—N2—C3	15.1 (2)
-1.2 (3)	C14—C3—N2—C8	74.5 (2)
0.3 (4)	C3A—C3—N2—C8	-161.78 (18)
179.5 (2)	C14—C3—N2—N1	-144.89 (18)
1.3 (4)	C3A—C3—N2—N1	-21.2 (2)
-1.8 (4)	C3A-C4-N5-C20	-176.51 (18)
0.6 (4)	C3A—C4—N5—C6	63.4 (2)
1.1 (4)	C21—C20—N5—C4	61.7 (3)
-178.5 (2)	C21-C20-N5-C6	-176.1 (2)
59.8 (3)	C7—C6—N5—C4	-56.7 (2)
-119.9 (2)	C7—C6—N5—C20	-178.0 (2)
	142.1 (2) $147.8 (2)$ $-33.3 (3)$ $-135.4 (2)$ $-11.3 (2)$ $40.4 (3)$ $164.53 (19)$ $-0.4 (3)$ $-178.2 (2)$ $-0.6 (4)$ $1.1 (4)$ $-0.6 (4)$ $-0.3 (4)$ $0.8 (3)$ $178.6 (2)$ $-140.5 (2)$ $103.9 (3)$ $39.0 (3)$ $-76.6 (3)$ $-1.5 (4)$ $178.0 (2)$ $179.33 (19)$ $-1.2 (3)$ $0.3 (4)$ $179.5 (2)$ $1.3 (4)$ $-1.8 (4)$ $0.6 (4)$ $1.1 (4)$ $-178.5 (2)$ $59.8 (3)$ $-119.9 (2)$	142.1 (2) $C6-C7-C27-C28$ $147.8 (2)$ $C7-C27-C28-C33$ $-33.3 (3)$ $C7-C27-C28-C29$ $-135.4 (2)$ $C33-C28-C29-C30$ $-11.3 (2)$ $C27-C28-C29-C30$ $40.4 (3)$ $C33-C28-C29-C12$ $164.53 (19)$ $C27-C28-C29-C12$ $-0.4 (3)$ $C28-C29-C30-C31$ $-178.2 (2)$ $C12-C29-C30-C31$ $-0.6 (4)$ $C29-C30-C31-C32$ $1.1 (4)$ $C30-C31-C32-C33$ $-0.6 (4)$ $C29-C28-C33-C28$ $-0.3 (4)$ $C29-C28-C33-C32$ $0.8 (3)$ $C27-C28-C33-C32$ $0.8 (3)$ $C27-C28-C33-C32$ $0.8 (3)$ $C27-C28-C33-C32$ $178.6 (2)$ $C7-C7A-N1-N2$ $-140.5 (2)$ $C3A-C7A-N1-N2$ $103.9 (3)$ $C13-C8-N2-N1$ $39.0 (3)$ $C9-C8-N2-C3$ $-1.5 (4)$ $C9-C8-N2-C3$ $178.0 (2)$ $C7A-N1-N2-C8$ $179.3 (19)$ $C7A-N1-N2-C8$ $179.3 (19)$ $C7A-N1-N2-C8$ $179.5 (2)$ $C14-C3-N2-N1$ $1.3 (4)$ $C3A-C3-N2-N1$ $1.3 (4)$ $C3A-C3-N2-C4$ $179.5 (2)$ $C14-C3-N2-N1$ $1.3 (4)$ $C3A-C4-N5-C66$ $1.1 (4)$ $C21-C20-N5-C4$ $-178.5 (2)$ $C21-C20-N5-C4$ $-179.9 (2)$ $C7-C6-N5-C20$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C3—H3…Cl1	0.98	2.61	3.101 (2)	111
C27—H27····Cl2	0.93	2.68	3.043 (3)	104

Fig. 1

